
SWEN 262
Engineering of Software Subsystems

Decorator Pattern

Pizza POS System

There are a number of different ways to
design the system for building a pizza.
Let’s take a look at some of the options...

1. The Point of Sale (POS) system for a pizzeria must allow

employees to prepare a pizza order.
a. The order includes pizza size, crust, & toppings.
b. The order also includes prep and cook instructions, which vary based on

the toppings.

2. The customization options include:
a. Available pizza sizes are small ($10), medium ($12), large ($15), and

sheet ($21).
b. The available crust types are regular (white) and wheat (extra $1).
c. Available toppings include extra cheese ($1), pepperoni ($2), sausage

($2), bacon ($1.50), hamburger ($1.50), mushrooms ($1), banana
peppers ($2), black olives ($1.25), peppers ($1.25), onions ($1), and
anchovies ($3).

d. Customers with coupons received a 15% discount on their total order.

3. Once the order is prepared, the total price is calculated and

the employee follows the prep and cook instructions.

Subclassing The obvious place to start is a Pizza
interface, which defines the behaviors
for a pizza order.

Next, two subclasses will be required:
one for each of the basic crust options,
each of which has its own prep
instructions, cook instructions, and
pricing.

Pizza
<< interface >>

+ totalPrice(): double
+ prepInstructions(): String
+ cookInstructions(): String

Size
<< enum >>

+ SMALL
+ MEDIUM
+ LARGE
+ SHEET

+ basePrice(): double

RegularCrust

- size: Size

+ totalPrice(): double
+ prepInstructions(): String
+ cookInstructions(): String

WheatCrust

- size: Size

+ totalPrice(): double
+ prepInstructions(): String
+ cookInstructions(): String

Subclassing The obvious place to start is a Pizza
interface, which defines the behaviors
for a pizza order.

Next, two subclasses will be required:
one for each of the basic crust options,
each of which has its own prep
instructions, cook instructions, and
pricing.

Subclassing Next, we create subclasses for each
topping, e.g. regular crust with
pepperoni, wheat crust with extra
cheese, and so on...

And the same options for pizza with a
wheat crust...

Pizza
<< abstract>>

RegularCrust WheatCrust

RegularPepperoni RegularExtraCheese WheatPepperoni WheatExtraCheese

Subclassing But what if the customer wants both
pepperoni and extra cheese? On either
crust?

And what about other combinations like
pepperoni, peppers, anchovies, and
black olives?

Pizza
<< interface >>

RegularCrust WheatCrust

RegularPepperoni RegularExtraCheese WheatPepperoni WheatExtraCheese

WheatExtraCheeseAndPepperoniRegularPepperoniAndExtraCheese

Combinatorial Class Explosion
If we need to create a different class for every possible
combination of toppings and crust, things will get out of
hand quickly.

This image shows only the pizzas with regular crust and
some combination of extra cheese, pepperoni, black
olives, and anchovies.

There are six more toppings to choose
from!

Not to mention we’d need all the same
options on a wheat crust as well.

And what happens if we add new
toppings or crust options?! This
solution is obviously not scalable.

A Component Interface

public interface PizzaOrder {

 String prepInstructions();

 String cookInstructions();

 double totalPrice();

}

As before, we will start by creating an interface
that represents one of the components that
may make up a pizza order.

It should define the behaviors that we expect
from any pizza order, i.e. prep instructions, cook
instructions, and total price.

A Concrete Component(s) public class WheatCrust implements PizzaOrder {

 private Size size;

 public String prepInstructions() {

return “Stretch ” + size + “ wheat ” +

 “dough onto ” + size + “ pan. ” +

 “Add sauce and 1/2\" layer of cheese.”;

 }

 public String cookInstructions() {

return “Place in oven. Bake at 450 ” +

 “degrees for 12 minutes.”;

 }

 public double totalPrice() {

return size.basePrice() + 1;

 }

}

Next, we will create one or more concrete
components to implement the most basic kinds
of pizza order.

Each will provide an implementation of all of the
methods defined in the component interface.

In this case, a basic wheat crust pizza with red
sauce and mozzarella cheese. Remember,
wheat crust adds $1 to the base price of the
pizza.

We’d need another concrete component for
pizza with regular crust.

A Decorator
public abstract class OrderOption

implements PizzaOrder {

 protected PizzaOrder order;

 public OrderOption(PizzaOrder order) {

 this.order = order;

 }

 public String prepInstructions() {

return order.prepInstructions();

 }

 public String cookInstructions() {

return order.cookInstructions();

 }

 public double totalPrice() {

return order.totalPrice();

 }

}

Next, we’ll need a decorator class that also
implements the component interface.

But the decorator also wraps another instance of
our component interface. By default, each of the
methods delegates to the same method on the
wrapped component.

For this reason, sometimes decorators are also
called wrappers.

Because the decorator and concrete
component share the same interface, external
clients do not need to distinguish between them.

A Decorator public class ExtraCheese

extends OrderOption {

 public ExtraCheese(PizzaOrder order) {

 super(order);

 }

 public String prepInstructions() {

return super.order.prepInstructions() +

 “Add an additional 1/2\" layer of ” +

 “ extra cheese.”;

 }

 public double totalPrice() {

return super.order.totalPrice() + 1;

 }

}

Finally, we will create a concrete decorator for
each of the different order options that the
customer may choose for their pizza.

Each extends the decorator and overrides any
of the methods that should change behavior
based on the option..

We refer to these methods that add, modify, or
replace behavior as decorations.

Each concrete decorator may alter some or all
of the behaviors in its wrapped component.

Different Decorators

public class BOGO extends OrderDecorator {

 public BOGO(PizzaOrder order) {

 super(order);

 }

 public double totalPrice() {

return 0;

 }

}

There are three basic ways that a concrete decorator
may implement each of the methods in the component
interface.

It may modify the behavior in its wrapped component,
usually by doing something before or after calling the
method on the wrapped component, e.g. by discounting
the price by 15%.

public class Coupon extends OrderOption {

 public Coupon(PizzaOrder order) {

 super(order);

 }

 public double totalPrice() {

return super.order.totalPrice() * 0.85;

 }

}

It may simply pass through and use the wrapped
component’s implementation of the method (e.g. prep
instructions and cook instructions in these examples).

It may completely replace the behavior, e.g. a buy one
get one free offer that reduces the cost of the pizza to
$0.

Building a Pizza Order

PizzaOrder order = new WheatCrust(Size.LARGE);

order = new ExtraCheese(order);

order = new Pepperoni(order);

order = new Coupon(order);

PizzaOrder second = new RegularCrust(Size.SMALL);

second = new Anchovies(order);

second = new BOGO(second);

Building a new pizza order starts with choosing
which of the concrete components to instantiate.

New options are added to the order by creating
the appropriate concrete decorators and passing
a component into the constructor.

Note that the component passed into the
constructor may be a concrete component...

...or another concrete decorator! Each decorator
adds its unique behavior to the order, for example,
getting the prep instructions on our first order
might return...

Stretch LARGE wheat dough onto LARGE
pan. Add sauce and 1/2" layer of cheese.
Add an additional 1/2" layer of extra
cheese. Add a single layer of pepperoni
covering 50% of the surface area.

GoF Decorator
Structure

Intent: Attach additional responsibilities to an
object dynamically. Decorators provide a flexible
alternative to subclassing for extending
functionality.

(Structural)

Pizza POS System Design

Note that there are many more concrete
decorators than can be depicted on this
slide.

As usual, each class has a
context specific name...

...but its role in the pattern is
indicated in << guillemets >>.

This diagram shows a cashier
creating an order for a small,
wheat crust pizza with extra
cheese and pepperoni.

As each topping is added, a
new decorator is created.

Each topping "decorates" or
"wraps" the previous order.

The coupon must be applied
last (this is a deviation from the
standard pattern).

When computing the total
price, each decorator must get
the price from its wrapped
component, then add/modify it
accordingly.

GoF Pattern Card

Name: Pizza POS System GoF Pattern: Decorator

Participants

Class Role in Pattern Participant’s Contribution in the context of the application

PizzaOrder Component Defines the essential behavior for a pizza order, namely: that every
order has prep instructions, cook instructions, and a total price.

RegularCrust Concrete
Component

A basic cheese pizza with a regular (white) crust, red sauce, and no
additional toppings. Total price is determined by the size of the pizza.

WheatCrust Concrete
Component

A basic cheese pizza with a wheat crust, red sauce, and no additional
toppings. There is a $1 markup in the price for wheat crust.

OrderOption Decorator Base class for options that may modify an order including toppings and
coupons. Contains a wrapped PizzaOrder. By defualt, passes all
method calls through to the wrapped component. Abstract to prevent
instantiation.

ExtraCheese Concrete Decorator An order option that modifies prep instructions to add extra cheese.
Also adds $1 to the total price of the wrapped order.

Coupon Concrete Decorator An order that discounts the total price of the wrapped order by 15%.
Must be applied LAST.

Deviations from the standard pattern: There are two concrete components. Coupon and BOGO
decorators must be applied last.

Requirements being covered: 1. Pizza orders, 2. Order customization, 3. Calculate total price.

There are way too many concrete
decorators to fit on one slide, even
with 8 pt font.

Thankfully, this is only an
abbreviated example. Any
decorator GoF cards that you
submit should include a row for
every participant.

Remember that it is OK for a GoF
card to span multiple pages in a
design document.

Decorator

There are several consequences to
implementing the decorator pattern:
● Decorators provide more flexibility than

static inheritance.
● Avoids feature-laden classes high up in the

class hierarchy.
● A Decorator and its Component implement

the same interface but are not identical.
● Lots of little objects.

Things to Consider
1. How does Decorator help to

alleviate class explosion?
2. How does Decorator handle

coupling and cohesion in the
system?

3. OCP?
4. Given the similar nature of

Composite and Decorator, how
would you decide which one to
use?

